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Self-Diffusion in Fluids with Weak Long-Range Forces 
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Diffusion of a test particle in a homogeneous classical fluid with weak long- 
range forces is studied. The dominant mean-field effect (Vlasov's theory) van- 
ishes for symmetry reasons. Dynamical phenomena follow then from fluctua- 
tions of the effective potential energy felt by the propagating particle. The 
kinetic equation corresponding to this mechanism is derived with the use of the 
multiple-time-scale method. Its structure resembles very much that of the 
(linearized) Balescu-Lenard equation of hot plasma theory. It is shown that the 
kinetic equation holds only if no phase transition occurs in the system. The 
thermalization of the diffusing particle and the high-temperature and Lorentz 
gas limits are discussed. 

KEY WORDS: Self-diffusion (motion of a tagged particle); reduced distribu- 
tions; BBGKY hierarchy; mean-field limit; van der Waals fluid; multiple- 
time-scale method; correlation functions; kinetic equation; Lorentz gas. 

1. INTRODUCTION 

The study of the motion of a selected particle in a classical fluid at thermal 
equilibrium is a problem of nonequilibrium statistical mechanics which has 
played an important role in the analysis of the foundations of kinetic 
theory. 2'(2) One of the basic questions studied is that of the mechanism of 
thermalization. Suppose that the momentum of the nonequilibrium tagged 
particle is known exactly at some initial time. As the microscopic states of 
the fluid are distributed according to the Gibbs ensemble density the 
momentum variable will follow, during the further motion, a complicated 
stochastic process. One expects that this process will eventually transform 
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the momentum distribution of the tagged particle into an equilibrium 
Maxwell one. The mechanism of the thermalization process (if it occurs) 
yields information about the dynamical properties of the fluid. In general it 
is extremely hard to study this kind of question as the momentum variable 
evolves according to a non-Markovian process. However, in a number of 
asymptotic cases the problem can be reduced to solving an appropriate 
kinetic equation, which is local in time. The rigorous results obtained in this 
field have been recently reviewed by Spohn (2) (important progress is to be 
noted during the last decade). 

The aim of the present work is to discuss a new case where it turns out 
to be possible to describe the evolution of the momentum distribution 
under the influence of the fluid in terms of a kinetic equation. From the 
physical point of view the problem can be stated as follows. Suppose that 
the fluid particles interact via weak long-range forces giving rise to the 
mean-field effect. The mean-field limit has been studied extensively and is 
known to lead to the Vlasov equation (see Ref. 2 and references given 
therein). However, when the fluid is initially at thermal equilibrium, the 
effective mean force felt by the selected particle vanishes for symmetry 
reasons. In order to describe the diffusion process one has thus to go in this 
case beyond the usual mean-field approximation and consider higher-order 
effects which are those of fluctuations of the potential energy. The deriva- 
tion of the corresponding kinetic equation and the discussion of conditions 
under which it describes the thermalization process are the basic content of 
this paper. 

In Section 2 I define precisely the system and its dynamics. The 
microscopic formulation of the mean-field limit and its connection with the 
theory of van der Waals fluids are discussed in Section 3. Section 4 is 
entirely devoted to the derivation of the evolution equation for the momen- 
tum distribution of the tagged particle (application of the multiple-time- 
scale method). In Section 5 the conditions under which a kinetic equation is 
obtained are derived and interpreted from the physical point of view. 
Section 6 contains the discussion of the kinetic equation satisfied by the 
momentum distribution. Its analogy with the generalized Landau equation 
of hot plasma theory (Balescu-Lenard equation) is stressed. The high- 
temperature (low-density) limit is analyzed in detail. The Lorentz gas case 
is then studied (Section 7), and the paper is closed with final remarks 
(Section 8). The mean-field limit for equilibrium pair correlations is calcu- 
lated in the Appendix. 

2. THE SYSTEM AND ITS DYNAMICS 

I consider here a fluid composed of an infinite number of identical 
particles moving in R d. The phase of particle j will be denoted by 
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xj = (qj, pj), where qj ~ R a, pj E R a are the position and momentum vec- 
tors, respectively. All the particles are supposed to have unit masses. They 
interact via a spherically symmetric pair potential V. The force exerted by 
particle j on particle i equals 

0 V(qy)  
F(qg)  = Oqi (1) 

where q? = qi - qj. 
Initially (at time t = 0) particle 1 is known to have momentum Pl = P. 

The remaining degrees of freedom of the fluid are distributed according to 
the laws of thermal equilibrium. One can describe this situation by a set of 
reduced distributions of the form 

j ~ ( x l , . . . ,  x,; 0) = 8(el  - p ) f 2 ( x ,  . . . . .  x D / r  ), s = 1,2 . . . .  
(2) 

Here fs~q(xl, . . . ,  x~) represents the equilibrium number density of s-tuples 
of particles with phases (x I . . . . .  x,). The deviation o f f  from fs eq consists in 
replacing the Maxwell momentum probability density for particle 1 

~eq(pl) = ( f i /2"rr)a/2exp( - 1~p2/2) (3) 

(/3 is the inverse temperature) by the Dirac distribution 8(p I - p ) .  Func- 
tions f~ can be looked upon as obtained from the formula 

f (x, . . . . .  x.;O)=l Nsf ax +, . . . f axNo(x ,  . . . . .  xN;0) (4) 

where limoo = limN__,oo,n=cons t denotes the thermodynamic limit (n is the 
fluid number density), and the initial ensemble density O is related to the 
equilibrium N-particle Gibbs d i s t r ibu t ion /q  by 

p(X, . . . . .  XN; 0) = (~(Pl --P)peq(x1 . . . . .  XN)/~eq(Pl) (5) 

It is important to realize that the reduced distributions which do not 
depend on the phase of particle 1 have equilibrium values. For example, 

l N2fdxlfdX, . . .  fdXNO(X, . . . . .  (6) 

This means that the influence of a single particle on correlations between 
other particles vanishes in the thermodynamic limit. 

The time evolution of the state of the fluid will be supposed to be 
governed by the BBGKY hierarchy equations [see, e.g., Ref. l(a), p. 192]: 

"t- ~ e i "  ~ q /  -I" " L(X1 . . . . .  Xs;t ) 
i=1 j = l  

dx,+ l F (q i ,+ i ) ' -SW ~ f , + i ( x i , . . . , x s + i ; t  ) (7) 
i = 1  
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The initial state, characterized by distributions (2), is translationally invari- 
ant (in the position space). This property is propagated in time by hierarchy 
(7). It follows that the one-particle distribution fl(xl; t), which will be the 
main object of the present study, does not depend on variable ql and has 
the form 

fl(xl; t) = n~(p]; t) (8) 

where n is the equilibrium number density. 
Let me also remark that all the reduced distributions which do not 

depend on the phase of particle 1 [see, e.g., Eq. (6)] remain unchanged in 
the course of time, preserving their equilibrium values (they yield a station- 
ary solution of the corresponding BBGKY hierarchy). 

3. THE MEAN-FIELD LIMIT AND THE CONCEPT OF 
A VAN DER WAALS FLUID 

The evolution of the momentum distribution of nonequilibrium parti- 
cle 1 (self-diffusion in momentum space) corresponds in general to a 
complex non-Markovian process. I shall consider here an asymptotic 
regime where the description of this process greatly simplifies and can be 
given in terms of a kinetic equation. From the physical point of view the 
motion of the tagged particle will be studied in the mean-field limit. 

A convenient analytical formulation of this limit at the microscopic 
level is by now well known. (2) One associates with the original system [with 
pair potential V(q)] a new one in which particles interact via a scaled 
potential 

V~(q)-- eV(el/dq) (9) 

When the dimensionless positive parameter e tends to zero V~ becomes very 
weak and long range. The density of the fluid being fixed, the propagating 
particle feels essentially an effective mean potential field. Although the 
interaction V~ between any given pair of particles vanishes when e-+ 0, the 
total effect of the fluid medium on particle 1 shifts (in average) its energy 
by a finite amount. Indeed, the measure of this shift is given by an 
e-independent integral 

f dqeV(el/dq) = ~ ;dr V(r) (10) 

Clearly, such a constant shift has no dynamical effect, as no force results 
from it. This is so because mean density n stays constant all over the system 
whose state preserves at any time translational invariance. In this situation 
the changes in the momentum distribution are conditioned by fluctuations 
of the potential energy. 
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Let me remark that scaling (9) has been successfully applied to the 
description of the effect of long-range attractive forces in the microscopic 
formulation of the van der Waals theory of the liquid-vapor phase transi- 
tion (3~ (transport properties of fluids have been also examined along these 
lines (4)). The success of this approach justified calling model fluids, whose 
long-range pair interaction is represented by a scaled potential V,, van der 
Waals fluids. The physical content of the mean-field and van der Waals 
asymptotics is the same, the only difference being in the order of magnitude 
of various effects. The origin of the difference is that the scaling of the 
potential is accompanied in the mean-field approach by a simultaneous 
scaling of space and time variables ( q ~  c l /aq,  t ~  ~]/at),  whereas in the 
theory of van der Waals fluids it is not. Thus, for example, the microscopic 
force between a pair of particles in a van der Waals fluid is given by 

- 0 V , ( q ) / O q  = e ] + ] / a F ( e l / a q )  (11) 

[see Eq. (1)], and in the mean-field theory it equals 

- ~ V , ( q ) / O ( e ' / a q )  = e F ( e l / d q )  (12) 

It follows, that the average force felt by the tagged particle in a van der 
Waals fluid is an effect of the order ~1/~, whereas in the mean-field limit it 
is a zero-order quantity leading (when the fluid is not uniform) to Vlasov's 
theory. From the qualitative point of view this difference in the orders of 
magnitude is of course irrelevant. 

As has been already mentioned, in the case under consideration, there 
is no dynamical effect on the time scale corresponding to Vlasov's theory. 
The relevant time region is the one in which fluctuations in the potential 
energy become significant. I shall now proceed to the derivation of the 
corresponding evolution equation for the momentum distribution q0(pl; t), 
considering the system with the scaled interaction (9) in the limit c ~ 0. 

4. EVOLUTION OF THE MOMENTUM DISTRIBUTION OF THE 
TAGGED PARTICLE 

It is natural to associate with the scaled potential V~ the transformation 
of the space and time variables 

q--~ r = e l / aq  
(13) 

t--->'r = er /at  

Fixing r and T is equivalent to considering space and time intervals of the 
order e-1/a. When the potentia ! V is replaced by V, and variables (13) are 
introduced one finds that the two first equations of the hierarchy (7) take 



380 Plasecki 

the form 

g F 0 

~ +P~'-g-~r~ +P2" Or2 

+ ~ ' ( r12  ) �9 ~el 0?2 ? ' '  :2; 

/ / [ ~1i "Fi~ ] " #" 
(14) 

The translational invariance of distributions f~ has been made explicit in 
writing Eq. (14). 

In order to determine the evolution of the one-particle distribution f i  
in the c ~ 0 limit I shall apply here the multiple-time-scale method, well 
known in the theory of plasma. 3 In the case under consideration two time 
scales will suffice. The method then consists in associating with the hierar- 
chy equations (14) a new set of equations of the form 

3 +e_~ l ) f l~ (p l ; , ro , , r l )=_ fdr2 fdp2F(r l2 ) ._~ l f~ ( r l2 ,  pl, p2;,ro,,rl ) 

(15) 

+ c  + P l ' ~ r  l + P 2 " ~ r  2 +EF( r l2 ) "  8p I 0p 2 

Xk(r12,  Pl,  P2; "ro, ~'1) 

= -  dr 3 d 1 7 3  F(ri3) '~p i f~(r12, r13,rz3, Pl, P2, P3;ro, rl) 

(16) 

Functions f f  are defined over a two-dimensional time space (variables T o, ~'1 
are independent), and the role of the derivative 0/0,r is played by the 
operator 

+~ 9 07  ) 

3A particularly clear presentation of the multiple-time-scale method is given in Ref. 5 and 
other references therein. 
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It is readily checked that solutions of the new hierarchy yield solutions of 
the original one when restricted to the line 

% = "r, "r I = ~ r  ( 1 8 )  

Hence, the time evolution of distributions f~' for ~- > 0 can be deduced from 
any solution of hierarchy (15), (16) satisfying the condition 

)~'l~o= ~, =o = fs'l~=o , s =  1,2 . . . .  (19) 

The interest of the method comes from the fact that outside line (18) one is 
free to impose additional boundary conditions. This is usually done in such 
a way as to guarantee the proper long-time behavior of reduced distribu- 
tions in any of the time scales involved. The best clarification of this point 
will be provided by the application of the method presented below. 

In the van der Waals (mean-field) limit correlations between particles 
disappear. Consequently, the reduced distributions can be asymptotically 
written as 

f~, = j~o + Ell + 0(~=) (20) 

where 

i ~ l  

and 

j =  1 i(vaj) 

j <k i~(j,k) 

s =  1,2 . . . . .  7j=-(rj,  pj) (21) 

The above asymptotic representation is in full accordance with rigorous 
results concerning the behavior of equilibrium correlations in the van der 
Waals limit. (6) When put into hierarchy equations (15), (16) it leads to a 
consistent scheme of equations which can be (in principle) consecutively 
solved. The first of them [terms of the order ~0= 1 in Eqs. (15) and (16)] 
reads 

j~~ ~-0,~-1) = 0 (22) 
~'0 

The one-particle distribution (at least to the dominant order) does not 
change in the E---> 0 limit on the time scale corresponding to variable % 
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[times t~E-1/d; see Eqs. (13) and (18)], which is the time scale of Vlasov's 
theory. In order to observe its evolution variable ~'1 must be used which 
corresponds [on the line (18)] to physical times t ~ e - l - l / d .  

The term of the order c ~ in Eq. (15) leads to the equation 

O ~o(pl;,rl)= - f dr2f dp2F(rl2) 0'l'; j~. (/91 ; T0' q'l) -[- 

0 ] r �9 3Pl g (12'P~'P2;~'0'T1) (23) 

Requiring that j~l(p]; to, r1) is well behaved in the ~o ~ oe limit determines 
the ,q dependence of ~0 through the boundary condition 

lim (dr2 (dp2F(rl2) . ~ ' r ~ ~~ (24) "r0---~~ J J " " ~ 1  g ( 1 2 ' / ) I ' P 2 ; T 0 " r l )  = -- 0TI 

In order to transform Eq. (24) into an evolution equation for j~0 the second 
equation of the hierarchy is needed. The terms of the order e I in Eq. (16), 
after using Eq. (23), yield the relation 

( 0 0 ~ ) 1 r ~,0 +e, ~ + e 2 - ~  g ( ,2, el, e2;,o,,,) 

( 0  0 )Z0(p,; , ,o 
"t" f ( r l 2  ) �9 ~Pl 0192 1)f~ (/02, "7"1) 

[ F(r23)'-~p~O = - f a r 3 f d p 3  g'(r,3, e l '  /03; '/'0' 'it 1)j~0(/72; T,) 

0 'r  �9 ):~~ (25) + r(r'3)" ~Pl g ( 23, P2,/03, TO, 'rl 

Distributions which do not depend o n y  I = (rl, Pl) have equilibrium values 

j~~ r,) = nqoeq(e2) 
(26) 

g'(r23, P2,/03; To, r,) = gl'eq(r23)q0eq(p2)~eq(p3) 
Hence, with the aid of the linearized Vlasov operator/-)(2), which acts on a 
function h(y I, Y2) according to the formula 

A 0 
U(2)h(y,, Y2) = Pz" ~ h(y,, )'2) 

"[- n(dr3 f dp3F(F23) " '~-d-_ qgeq(P2)h(Y,, Y3) (27) 
d . ]  u/] 2 
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Eq. (25) can be rewritten as 

~,o +p' " ~  +/~(2) g'(,,2,p,,p2;q-o,~,) 

0 )Z0(e,;,1)~eq(e2) 

J~0(/) 1 "q ' l )g  l'eq(F23)q0eq(/)2) (28)  - f dr3F(",3)" g F , 

Its solution may be obtained by standard techniques (the details can be A 
found in Ref. 5). In order to write it let me introduce the notation f for the 
Fourier transform of function f: 

f (k) = (2,0-dfa,'e-i~Z(r) (29) 
A 

Using the short-hand notation R(k, Pi,/)2; ~'1) for the Fourier transform of 
the right-hand side of Eq. (28) (with respect to variable r = rl2), 

R(k,p,,/)2;q-,).~_ii~(k {[ ] O -nk"  O } Ln + (2'n')~'l'eq(k)~ k" 0/), ~f12 

x ~~ ~',),~e~(/)2) (30) 
one can write the solution of Eq. (28) as 

~(k, Pl, P2; q-o, q-l) 

= f~176 dz [ 1 
.,a-ioo 2~ri e~~ gl(k'/)~'/o2; O'q-t) z + i k . / ) i 2  

i(2~r)anV(k)k �9 0 q0eq(/)2) / 0/) 2 
(z + ik . / ) ,2)D(-k;z + ik ./),) 

where 

X 

Al p. ] g (k,/)1, f12, O, q-l) 

/~(k, Pt, P2; ~-1) _ i(2r nV(k)k.  Oq~eq(p2)/Op2 
z + ik'p~2 (z + ik 'p~2)D(-k;z  + ik.p~) 

A 
r . ,  R(k, pl, P'2;q-l) ] 

x Jap2 z + ik.(p~ -p~) (31) 

�9 d" f 1 k" D ( - k ; z ) =  l + m(2~) V(k) dp2 z _  ik .p  2 Op 2 (32) 
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and the complex integration (over variable z) corresponds to taking the 
inverse Laplace transform. The function D ( - k ;  z) is here the analog of the 
so-called Landau denominator (plasma dielectric function). (s) (For a de- 
tailed discussion see, e.g., Ref. 7.) 

The solution (31) can be directly used to transform Eq. (24) as the 
latter can be written in the form 

0r---~ f~ (p~' rl) = ,0--'lim~ - i(2~r) d dp2 dk I)(k)k. 

(33) 

Taking into account Eq. (32) one finds the following evolution equation: 

0 ~0(p , ; r l )=  lim Ac~ 0 + lim ~ o l J , . .  ' ~ n  t e l ,  r O  ( 3 4 )  
~ , r  1 'r0---> oc r/.__)0 + 

The term A c~ depends on correlations at time r 0 = 0 and is given by 

f fdp  s de e.oq)(k) k AC~ d dk 2 2~i 
o - -  i o ~  

gl(k, pl, p2;O,'q) 
Opt (z + ik 'p~2)D(-k;z  + ik.pl) 

The collision term A~ ~ reads 

ACOn,_ = )df fdp* n tP1, 1) -i(2~r dk 2V(k)k 
A 

0 R(k, P], P2; rl) 

aPI 01 + ik .PI2)D(-  k; ~/+ ik "Pl) 

The integration over P2 can be performed in A c~ owing to the relations 

f 1 k .  ~ D ( - k ; z + i k . p l ) -  1 
z + ik r ~  = 

D ( - k ; z  + i k . p l ) -  1 7 
f 1 cpeq(p2) _ 1 1 - d 

dp2 z + ik "Pl2 z + ik "Pl (2~r) nflV(k) J 

(35) 

(36) 

Moreover, one can easily calculate the equilibrium correlation function 
~l"eq(k) appearing in R(k, Pl, Pz; %) [see Eq. (31): the calculation is given in 

(37) 
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the Appendix]. It has the form 

n2/~Qk) 
- d * ( 3 8 )  

g"eq(k) = 1 + (2~r) nf lV(k )  

With the use of Eqs. (37) and (38) the collision term can be rewritten as 

Atoll . f 0 n v P , , % ) = i  d k l ) ( k ) k  �9 Op, 

1 + 1 
• - D ( - k ; n  + i k . p l )  f l ( k . p j  - iT) 

d * D ( - k ; n  + i k ' p l )  1 + (2~r) nf lV(k )  

•  1 ~~ rl) (39) 

The calculation of the limit limn__,0+ A~ ~ A c~ is greatly facilitated by the 
relation 

lim D ( -  k; n + ik . p~) ~ D ( -  k; ik . /71) 
~ 0  + 

= 1 + nB~'(k)(2~r) d 1 - f l(k .p,) 

• exp[ - f l ( l~ 'p , )2 /2  ] 

• exp[ - } 
(40) 

where/~ is a unit vector in the direction of k (k = ]k[/~). Indeed, Eq. (40) 
implies that 

{ D ( - k ; n +  i k . . p l ) - [ l  + (2rO '~nB l ) ( k ) ] )~ ( l~ .p l )  (41) 

which makes the passage to the limit n ~ 0+ in the denominator ( k . p ~  - 
in)-1 in Eq. (39) very simple. Taking additionally the symmetry properties 
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of various terms in the integrand into account one obtains the following 
final representation of the collision term: 

, n .z /2  0 
Ac~ f dk[kl[ ~r(k)]2(]~'-~l } 

X Ifexp[-fl(~f')2/2][ID(-k;ik .p,),2 fl(k " .p,) + (l~. ~O ) ]  )~0(p,; ~. ) 

(42) 

In the next section the correlation term given by Eq. (35) will be examined 
in the limit % ~ ~ [see Eq. (34)]. 

5. INFLUENCE OF INITIAL CORRELATIONS 

In order to establish the kinetic equation for distribution f~o with the 
collision term (42) one must prove that 

lim Ac~ 1"0,~'1) = 0 (43) 
"r 0 --> CO 

A 

Clearly, Eq. (43) does not hold for an arbitrary interaction V(k). A 
restricting condition is imposed by the requirement that function D ( - k ;  
z + ik .191) have no zeros in the half-plane Rez  > 0 [see Eq. (35)]. As has 
already been shown D ( - k ; z  + ik "PO has the structure of the plasma 
dielectric function. The condition for the absence of zeros of D ( - k ;  z + 
ik �9 Pl) in the half-plane Rez  > 0 can be obtained on the basis of the same 
reasoning that leads to the Nyquist-Penrose criterion for the stability of 
plasma (see Ref. 7, pp. 95-101, where references to the original literature 
can be found). 

Using Eq. (32) one finds 

�9 u ^ f dp2 z 1 D ( - k ; z  + ik.p) = 1 + t(2qr) nV(k)_ + ik.p,2 

When Re z > 0 the formula 

(z + ik'p,2)- '= fo~176 exp[ - v(z 

holds. Inserting it into Eq. (44) one gets 
d " D ( -  k;z + ik "Pl) = 1 + (2~r) nflV(k) 

• fo ~176 2 

0 eq(p2) 
k. OP2 (44) 

+ ik. P12) ] (45) 

_ _ _  _ v ~ - f l ( z  + i k ' p , )  1 
(46) 

J 
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Formula (46) yields the analytic continuation of D to the region Re z < 0. 
Clearly, the singularities of this function appear only at infinity (Re z < 0). 
At the imaginary axis (z = i~o, ~o E R 1) Eq. (46) takes the form 

D ( - k ;  i(o~ + k .p , ) )  

-- 1 + (2~') n f l V ( k ) j  ~ d v v e x p  - cos 

ikl (27r)dnBV(k)ex p _ _~ . +lklk "Pl t21 
(47) 

One can now argue as follows. 
Consider function D on the contour G shown in Fig. 1, in the limit 

where the radius R of the semicircle tends to infinity. To all points of the 
semicircle there corresponds a real value of D equal to 1, as 

lira D ( -  k; z + ik "e,) = 1 (48) 
z - ~ , R e z  ~0  

Moreover, when z varies along the imaginary axis there is only one point 
(z = - ik . Pl) where the imaginary part of D ( -  k; z + ik . Pt) vanishes [the 
case z = _+ ioe has been included in Eq. (48)]. At this point the real part 
equals 

R e D ( - k ; z  + ik . p , ) l z=_ ik .p=  1 + (2qr)anfll)(k) (49) 

Therefore, the graph on the (Re D, I m D )  plane, corresponding to contour 
G of Fig. 1, crosses the axis ImD = 0 at exactly two points: ReD = 1 and 
ReD = 1 + (2~r)dnfll)(k). Imposing the condition 

d " min [1 + (2r)  n f iV(k ) ]  > 0 (50) 
0<lkl-<< oo 

Imz 

Re~ 

Fig. 1. Contour  G in the complex z-plane used for the integration of the logarithmic 
derivative of function D. 
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Into 

R.7 

Fig. 2. Variation of the real and imaginary parts of function D along the contour G of Fig. 1. 

guarantees that it does not encircle the point z = 0, and has the form 
represented schematically in Fig. 2. 
But this implies that 

fG dz ~zD( -k ; z  + ik.pl)=O (5I) D(-k ; z  + ik.pl) 

As function D has no singularities in the half-plane Re z >/0 the vanishing 
of the integral in Eq. (51) means that it has no zeros in that region. 

For any interaction 12(k) bounded from below inequality (50) is 
satisfied provided the product (n/3) is sufficiently small [it is of course 
automatically satisfied at points k where V(k) ) 0]. Hence, at sufficiently 
high temperatures (low densities) one can expect the limit ~'0 ~ ~ of 
Ac~ $0, $1) to be well defined for a very large class of potentials. It is 
however to be noted that for a given interaction, for which there exist wave 
vectors k such that 12(k) < 0, the inequality (50) is violated at low tempera- 
tures (high densities), leading to divergencies in the correlation term. 

From the physical point of view condition (50) excludes the possibility 
of a phase transition in the fluid (in the region of temperatures and 
densities where it is valid). Let me explain this point in a particularly simple 
case where the absolute minimum of V(k) is attained at point k = 0. 
Suppose that 12(0) < 0. [This occurs, for example, when V(q) < 0, 0 < Iql 
< cr For a fixed density n and sufficiently high temperatures inequality 
(50) is satisfied. Let tic denote the inverse temperature at which the function 
[1 + (2r 12(k)] attains zero at k = 0, corresponding to the minimum of 
V(k), 

IP ' (0 ) -  dl~(Jk]) k=0 dlkl -- 0 (52) 

From Eq. (38) the equilibrium pair correlation function to the dominant 
order can written as 

n2/312(k) 
geq(q;n, r)  = -~ f dkexp(iq, k~ !/a) d ^ (53) 

1 + (2~r) n~V(k) 
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When fl 7tic, the contribution to geq coming from wave vectors k close to 
k = 0 becomes important, as [1 + (2~r)anflc I~(0)] = 0. The asymptotic form 
of the integrand in this region is given by 

A 

nBc v(o) 
(2~r)d[ ( fl - fie ) lP(O) + �89 tic 1"%'(0) k2 ] (54) 

where 

,, d2IT(lkl) [ 
- > 0  

V"(O) dIkl2 k=o 

A straightforward calculation of the inverse Fourier transform of expres- 
sion (54) in three dimensions yields the contribution to g~q of the Ornstein- 
Zernicke form 

-rql  
When fl .-"fl~ the range of geq tends to infinity as (tic - fi)-1/2, which is 
characteristic of the mean-field behavior at the critical point of the liquid- 
vapor phase transition. Hence, if V(0 )<  0 [violation of condition (50) at 
sufficiently low temperatures], the system undergoes a phase transition. 
Inequality (50), when valid for all temperatures and densities, excludes such 
a possibility [a similar discussion can be presented in the case where the 
minimum of V(k)  occurs at a point k v ~ 0]. 

In the rest of this paper I shall assume that the system fulfils condition 
(50). It seems then highly probable that Eq. (43) is satisfied. Indeed, (i) 
contributions to A c~ from zeros of D ( - k ; z  + ik "Pl) lying in the half- 
plane Rez  < -T/, ~ > 0, vanish exponentially in the r0---> oo limit; (ii) for a 
given value of vector k zeros of D ( - k ; z  + i k . p l  ) are located in the 
half-plane Rez  < -T/(k), 7/(k)> 0 (D is an entire function of variable z 
with no zeros in the region Rez />  0); (iii) the contribution to A c~ corre- 
sponding to the pole at z = - ik �9 P12 [see Eq. (35)] reads 

. klP.(k ) gl( k, P,, P2; O, ~',) e x p ( -  i%k "P12) (56) 
- f f D( -  k, ik . p2) 

The integral over k yields the Fourier transform at point 0"0P~2). So it 
vanishes when ~ ' 0 ~ ,  provided one can apply to the integrand the 
Riemann-Lebesgue theorem. 

The above remarks may be of interest for an actual proof of Eq. (43). 
Such a proof will not be given here. In view of all these plausibility 
arguments I shall just assume that the correlation term vanishes when % 
tends to infinity and condition (50) is satisfied. 
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6. THE KINETIC EQUATION 

Assuming that Eq. (43) holds and going back to the original time and 
space variables [see Eqs. (13) and (18)] one finds, with the use of Eqs. (8), 
(34), (42) the following kinetic equation for the momentum distribution 
r t) of particle 1: 

o (p; t) 
Ot - c'+'/d(2qr)en(~rfl/2)'/2 f dklkl[ I'~(k)]2 

 (P;O 

(57) 

where [compare with Eq. (40)] 

D ( -  k; ik . p) = 1 + (2~r)anfll)(k) 

• { fo expr 

- i ( � 8 9  fle)l/2(l~.p)exp[ - �89 fl(/~.p)2]} (58) 

The Maxwell distribution (3) is a stationary solution of Eq. (57). Multiply- 
ing both sides of Eq. (57) by [exp(flp2/2)q)(p;t)], and integrating over 
variable p one finds 

1 0 t" t 
2 0 t  ) @expt�89 

= -,1+'/~(2,r)dn(�89 g(k) ]  2 

exP(�89 ( [  ^ /~-8 ]r 2 (59) X 

The right-hand side of Eq. (59) is strictly negative, unless q~ = ~eq,  in which 
case it vanishes. Hence, if the distribution q0 belongs to the class of 
functions for which the integral appearing in Eq. (59) exists, it tends to the 
equilibrium Maxwell distribution in the long-time limit. It follows that the 
thermalization of particle 1 does occur on the time scale t ~ e - I - I / d  

It is interesting to note that the kinetic equation (57) has the form of 
the linearized Landau equation (or rather its generalization to the ring 
approximation) for the momentum distribution of a test particle in a 
plasma (see Ref. 7, p. 233). Its solution depends on time through the 
product (e ~+ ~/at). This implies that the coefficient of self-diffusion D~ is of 
the order e ] + J/a 
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Equation (57) simplifies considerably in the high-temperature (low- 
density) regime 

A 

nflV(k) << 1 (60) 

where function D can be replaced by 1. It there takes the form 

~ ( p ;  t ) _ A , ~ . [ T ( p ) . ( f l p +  ~ ~t ~p ) ] ~ ( p ; t )  (61) 

where 

A,~ = e'+l/u(2~r)dn(2~fi)'/2 foo~ l)'(k)]2dlki (62) 

and the tensor T(p) is given by 

T(p) = �89 fdl~ l~ l~ e x p [ -  �89 fl(/~ .p)2] (63) 

Equation (61) has a universal character in the sense that the whole 
dependence on the pair potential V enters only through the multiplicative 
constant a~. It can be obtained alternatively by considering the self- 
diffusion in an ideal fluid, which means that the thermal bath in which 
particle 1 propagates is assumed to be an ideal gas. In order to see it, let us 
notice that Eq. (25), describing the evolution of the correlation function g l, 
reduces in this situation to 

+e2.  

as F(rza ) = O, and gl(r23, P2, .P3; "r0, "rl) = 0. The Fourier transform of gl can 
be thus readily calculated yielding 

~'(k, p,, P2; $0, rl) = exp( - ik �9 p,2To) ~'(k, p,, P2; 0, ~,) 

+ ifo~~ exp( -  ilzk" P,2) V(k)k  

( o  O . 0p, 0/~ 2 f~ (p ' '  T l)/'/q0eP(p2) (65) 

After inserting this result into Eq. (33) one can perform all the integrations 
involved in an explicit way. The result of lengthy but simple calculations is 
again the kinetic equation (61) [of course under the assumption that the 
correlation term 

A . . . .  ( P l ; ' 0 ' ' ' )  = -i(2") fdp2f'lK k 
�9 8p 1 V(k)~,~( k, Pl, P2; 0,T1)exp(-- i'rok "P,2) (66) 
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vanishes when ~-0 ~ oe; see the remark following Eq. (56)]. Clearly, one 
would expect on physical grounds that the self-diffusion process described 
by Eq. (57) tends to the one taking place in an ideal gas in the high- 
temperature (low-density) limit. So the fact that the same equation (61) is 
found by the two methods described above is satisfactory. 

In one dimension Eq. (61) reads 

where A ~ is given by Eq. (62) with d = 1. 
In general the tensor T(p) is diagonal in the system of reference whose, 

say, z axis is oriented along the vector p. In three dimensions one then finds 

= Tyy(p)= 7r~ld/~ (1 - ~2)exp(-flp2~2/2) Yxx(P) 
J r /  (68) 

= 2~rf01d/~ ~2exp(-/~p2~2/2) Tzz(P) 

Equation (61) has the structure of a Fokker-Planck equation describ- 
ing diffusion in momentum space [the same can be said about the general 
equation (57)]. In one dimension the corresponding coefficient of dynami- 
cal friction and the diffusion tensor are both proportional to exp( -  flp2/2) 
[see Eq. (67)], and thus vanish exponentially when p--> m. When d = 3, the 
coefficient of dynamical friction is given by 

= 4~rflfoldl.t ~2 exp( - flp2t~2/2 ) (69) 

[see Eq. (68)], so that 

~'l""(2v)3/2/B21p[ 3, when [ p [ ~ m  

Also the components of the diffusion tensor vanish in three dimensions 
according to power laws. I have already stressed the universal character of 
Eq. (61). The mathematical study of its solutions would thus be of interest. 
This question will be left open here. 

7. THE LORENTZ GAS 

The final part of my considerations will be concerned with the study of 
the Lorentz gas. In this case the heat bath is replaced by a medium of 
noninteracting, immobile (infinitely heavy) scattering centers, distributed 
uniformly in space. The diffusing particle 1 interacts with them through the 
scaled potential (9). 
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One can treat the Lorentz gas as the limiting case of the motion of a 
particle with a unit mass in an ideal gas heat bath, when the mass M of the 
ideal gas particles tends to infinity. The pair correlation function ~1 [see Eq. 
(65)] then takes the form 

~,~(k,p~,p2;%,tl) =exp P]M p2 T o g (k, pa, p2;O,T~) 

( 3 3 ) ~o(1),;z,)nep~(_p2 ) (70) J 

OPl OP2 

where 

~ t  (P) = ( f l /2~M )d/2 exp( -- f lp2/2M ) (71) 

Inserting this result into Eq. (33) one finds the following collision term: 

c o n . =  ( ),/2 

•  2flM(k.p)2] 

i f  l l  a Z~ x 

The limit M ~  ~ can be calculated with the use of the relation 

lim 1 (Mf l~  1/2 [ BM (k.p)21 = 3(k .p) (73) M ~ - ~  -~--~) exp[ -~-~T 

The kinetic equation describing the Lorentz gas reads 

0 (p; t) 
at #(k) ]  2 

The integration over k can be done owing to the relation 

f ak [ P( k) ]2 kk 3( k . p) = aa('[ - fifi) /IPl (75) 

where I is a unit tensor, and 

_ 1 aa_lfoo~'dlkllkld[#(k)]2 (76) ae d 1 
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od-1 being the area of a unit sphere in a (d - 1)-dimensional space. Using 
Eq. (75) one can rewrite the kinetic equation (74) in the form 

OP(P;t) e l+ l /anv (2~r )a (  Ot __  [ ~ 2  d - 1  0 ] }  ~ Ipl 0lpl - + t )  

(77) 

The differential operator in curly brackets is the difference between the 
d-dimensional Laplace operator A a and its radial part. It follows that the 
collision term vanishes when the momentum distribution cp is spherically 
symmetric. In other words, any spherically symmetric momentum distribu- 
tion provides a stationary solution of the kinetic equation (77). In the case 
of the Lorentz gas the thermalization process does not occur. Only the 
deviation of the angular distribution of momentum from an isotropic one 
evolves in time, vanishing when t ~ oo. [When d = 3, one may represent 
as a series of spherical functions and verify that its projection on spherical 
functions of order l decays like exp( -  7zt), with "fz~l(l + 1)/[p[3.] 

8. FINAL REMARKS 

The mean-field limit has important physical applications in dynamical 
theory of inhomogeneous fluids (e.g., Vlasov's equation in plasma physics). 
The characteristic time scale is there t~E -l/d ! have shown that for 
systems at constant density (Vlasov's force vanishes) dynamical effects 
occur on a much larger time scale ( t~e- l -1/d) ,  and are described (in the 
case of self-diffusion) by kinetic equation (57). A natural question arises 
whether there are situations in which real behavior of fluids is adequately 
described by it. Here the only remark I could make was to indicate a 
striking analogy between the results of the present study and those leading 
to the Balescu-Lenard equation in hot plasma theory (generalized Landau 
equation). 

In the theory of van der Waals fluids one assumes pair potentials of 
the form 

V(q) = W(q) + cVL(~'/aq) (78) 

Only the long-range part V/- is scaled according to Eq. (9). The short-range 
repulsive part V s is not. It would be of great interest to extend the theory of 
dynamical phenomena to this case. In particular, this seems necessary for 
understanding the origin of the difference in orders of magnitude of the 
self-diffusion coefficient Ds obtained here (D~--~ 1+ l/a; see Section 6) and 
of the correction to D~ due to long-range forces found for three- 
dimensional van der Waals fluids (with short-range repulsion) by Seghers, 
Rtsibois, and Pomeau (8) ( tD~ez/3).  
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Let me finally remark that condition (50) is not the only one to be 
imposed on the pair potential V in order to guarantee that the theory is well 
defined. Supplementary restrictions should be added to ensure the existence 
of the thermodynamic limit of reduced distributions [see Eq. (4)] and local 
thermodynamical parameters. The discussion of these restrictions can be 
found in the literature on the static properties of van der Waals fluids. (9~ 

APPENDIX 

At equilibrium the second equation of hierarchy (14) reads 

[ _ 8  ] =-flfdr3F(r13)n~'eq(r12,r13,r23) (A1) + 'flF(r'2) n;'eq(r,2) 

where ni'eq(rl . . . . .  r~) is the equilibrium number density of s-tuples of 
particles with positions ( r = , . . . ,  rs). The asymptotic representation (20) 
takes the form 

n~,eq(rl2) = /,/2 _[_ cgl,eq(rl2) 
(A2) 

n3,,eq(rl2 ' r,3, r23) = //3 -b E//[ gl'eq(rl2 ) 4" gl'eq(rl3 ) "1" gl'eq(r23) ] 

Inserting Equations (A2) into Eq. (A1) one finds (terms~e) 

8 gl'r ) + flr(rtz)n 2 = - nfl f dr 3 r(r13)g~'r (A3) 8rl 
Applying the Fourier transform to the above equation yields the relation 

g"eq(k) + n2fll)(k) = - (2~r)anfll~(k) gl'eq(k) (A4) 

equivalent to Eq. (34) in Section 4. 
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